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The eigenvalue problem governing small amplitude electrostatic modes in a cylin-
drical column of non-neutral plasma is solved using a finite difference method. The
eigenvalue problem is considered as a system of differential equations. A finite
difference approximation using a staggered grid converts this system to a gener-
alized matrix eigenvalue problem which is solved using readily available library
subroutines. Important features of the spectrum, such as degenerate eigenvalues, se-
quences of eigenvalues, continua, and unstable modes, are well represented by the
method. @ 2000 Academic Press
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1. INTRODUCTION

In recent years there has been considerable interest in computing the spectrum of
trostatic modes in magnetically confined non-neutral plasmas. While the low-freque
diocotron branch has been studied extensively, both analytically [1-5] and numeric
[6-8], interest in the high-frequency cyclotron or upper hybrid branch is fairly rece
[9-12]. To compare with the experimental observations [10], analytical solutions have b
obtained for cyclotron modes in a low-density cylindrical column of non-neutral plasr
[10-12]. These solutions are restricted to some particular choice of the equilibrium den
profile. Analytical solutions have also been obtained for both branches of the electrost
spectrum in a spheroidal non-neutral plasma [13]. These are again restricted by the
sumption of a constant density profile. The frequencies of various modes in spherc
non-neutral plasmas have been measured experimentally and these measurement:
been used as non-destructive diagnostics for plasma parameters [14-16]. It has beel
ognized that deviations from the number density profile assumed in the analytical stu
can cause quantitative changes in the mode frequencies [11]. Therefore, it appears rel
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to develop a numerical code which can compute the entire spectrum of electrostatic m
for arbitrary profiles of the number density.

Recently a numerical code for computing mode frequencies in a non-neutral plasme
been developed [17]. This code allows arbitrary profiles of the number density and consi
both the diocotron and the upper hybrid branch. However, the method used involves al
tensive search of the frequency domain, which is expected to be computationally expen
Computation of the mode frequencies was reported for configurations that are stable. L
this code, it would be even more difficult to predict instability, since this would involve
search in the complex frequency plane.

By contrast, in magnetohydrodynamics (MHD) codes have been developed which ¢
pute the entire spectrum of normal modes [18-22]. These codes use the finite elel
method to convert the differential equations governing linear stability to a generali:
matrix eigenvalue problem. The eigensolutions can then be readily obtained using m:
eigenvalue solvers.

In this paper we develop a numerical code for computing the complete spectrun
electrostatic modes in a non-neutral plasma. For simplicity we consider a cylindrical e
librium. We pattern our work on the lines of the stability codes in MHD. However, inste:
of the finite element method, we use the finite difference method.

While developing the stability codes in MHD some difficulties were encountered, e
spectral pollution. It was demonstrated that the problem could be resolved by an approp
choice of basis functions in the finite element method [19]. Later it was shown that
alternative method for avoiding spectral pollution was by using what were termed “fin
hybrid elements” [20]. This method uses the values of some variables at the mesh p
and of the other variables at midpoints between mesh points. Although spectral pollu
may not be a serious problem in the computation of the spectrum of a non-neutral pla:
it was realized that the use of a finite difference approximation with a staggered grid, wt
again uses the values of some variables at mesh points and of other variables at midp
provides a method to correctly take into account the appropriate boundary conditions.

The novel feature of the present numerical study is the use of a staggered grid and asu
choice of which variables to define at grid points and which at midpoints. This allows us
convert the differential equations governing linear stability to a matrix eigenvalue probl
which is linear in the eigenvalue and to develop codes for computing the entire spectrul
eigenmodes on the lines of the widely used spectral codes in MHD [21, 22]. As discusse
Section 3, the numerical method developed in this paper correctly addresses a tricky |
regarding the appropriate boundary conditions for the problem.

It should be noticed that, while linear MHD stability is governed by a self-adjoint eige
value problem, the equations governing small amplitude electrostatic modesinanon-ne
plasma constitute a non-self-adjoint system. While solutions have been obtained for the
self-adjoint eigenvalue problem governing resistive MHD stability [23], it is recognize
that the non-symmetric eigenvalue problem is still by no means standard [24]. Therefol
would be of interest to demonstrate the feasibility of solving the non-self-adjoint eigenva
problem for electrostatic modes in a non-neutral plasma.

This paper is arranged in the following manner. In Section 2 we formulate the problen
linear stability to electrostatic modes in a cylindrical geometry. In Section 3 we develop
numerical procedure for computing the spectrum and in Section 4 we use this procedu
compute the spectrum for some specific choice of the number density profile. In Secti
we discuss our findings and identify areas for further work.
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2. MATHEMATICAL FORMULATION

We consider a single species non-neutral plasma in an externally imposed magnetic
We assume that relativistic and plasma diamagnetic effects can be neglected and ful
more consider only electrostatic modes. Then, assuming a cold fluid model, the gover
equations are [25]

an
s TV (V=0 @)
%_}_V.sz%(—V@—{—VXB), (2
Vz(p:—gn. 3)
€0

Heren andv are the number density and fluid velocity of the plasmandm are the
charge and mass of each particle of the plasmis, the electrostatic potentid is the
externally imposed magnetic field, angs the permittivity of free space. We now transform
to dimensionless variables. We scale coordinates, number density, and magnetic field
respect to reference valuasg, andBgy. We choosa to be the radius of the cylindrical wall
enclosing the plasmaj to be the number density of the plasma on the axis, or, foran annu
plasma, to be the number density at some specified radial locatiorBgtadbe the axial
magnetic field. Furthermore, we scalgv, andt relative togg = qnoa?/eo, vo = |¢ol|/aBo,
andty =a/ve. In terms of dimensionless variables Egs. (1)—(3) are

an
— +V.(nv) =0, 4
st (nv) (4)
ov
M<8t+v~Vv>:—V<p+eva, (5)
V2p = —n. (6)

Heree =1q|/q is the sign of the charge on each patrticle of the plasma and

2
w
M= 2 (7)

=—>,
g

wherew%o:qzno/eom and wc = |q|Bg/m are the square of the plasma frequency an
the cyclotron frequency, respectively. It is readily seen tb}&twc/a)fm. Therefore, the
frequency scale is twice the diocotron frequency.

We consider a cylindrical equilibrium confined by an axial magnetic field. In a cylindric
coordinate systent (9, z) we assume that the magnetic field in dimensionless variables
B =e,. We assume an equilibrium given by

n=nr), Vv=ro@)e,  ¢=¢r). (8

The equation governing equilibrium is [26]

1 r
Mw? + ewy + r_2/ n°(r’)r’dr’ = 0. 9
0
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We next consider a perturbation from this equilibrium given by
n=n°+sn, V=248u6& + (ror +8vg)& + Sv,65, ¢ = ¢’ +8¢. (20)

The linearized equations for perturbations with9(, z)-dependence of the form exjg[6 +
kz — wt)] are [27]

. d
—Mi(w — lwy)8vr — (e + 2Mwy)dvy = —a&o, (11)
. wr il
—Mi(w —lwy)évg + | € + 2May ar Suy = —?(S(p, (12)
—Mi(w — lwy)sv, = —ikdg, (13)
1d d 12
i(w—1 ——(r— — —8p — k2
I (w wr)[r ar (r drS(p) r28<p Sga]
1d 0 il
+=—(rn%uy;) +n° —8v9+n|k8vz_0 (14)

r dr

We assume a grounded conducting walf at 1. Thenp =0 atr =1. The appropriate
boundary condition on the perturbation is

8o =0 atr =1. (15)

Solving fordvy, vy, andsv, interms ofs¢ from Eqgs. (11)—(13) and substituting in Eq. (14),
we obtain

1d Mn®\ d E Mn° n°
S r(1-—)— 1- — Kl1l- ——
rdr [r( G )dra ] rz( G )M [ M(w—lwr)2]8¢

1 |

(w—lw)r

0
b0 d [n (e+2|v|wr)} —0, (16)

where

d
G:Mz(a)—lwr)z—(6+2er)<e+2er+Mr d";’) (17)

Equation (16), together with boundary condition (15) and the condition of regularity of t
solution atr =0, constitutes an eigenvalue problem &@rOnce the eigenfunctioby is
known, vy, dvg, andsv, can be obtained by algebraically solving Egs. (11)-(13). Since |
derivatives of these variables are involved, the solution&ifaB vy, andsv, can be obtained
without requiring any boundary conditions on these variables. The entire eigensolution
be obtained using only boundary condition (15). Therefore Eq. (15) is the only bound
condition required for Egs. (11)—(14).

For a plasma column of constant density extending up to the mfa#,1 for O<r <1,
the eigenvalue problem has an analytical solution [28]

S =AJ(Tr), (18)
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whereA is a constant), is the Bessel function of the first kind of orderand

1
-I—2 _ _k2 [l - M(w—lwr)z] (19)
= —
1-%)
where
G = M%(w — lwy)? — (¢ + 2May)?. (20)
The dispersion relation is given by
T = pim, m=12..., (22)

wherep, is themth zero ofJ (x) = 0. Using Egs. (19) and (20), and with a little algebra
we obtain

2
M3 —lw)* — M{(e + 2Mar)? + M }(w — lop)? + ki(e +2Mw)? =0. (22)

k2 + pfiy
For a non-constant density profile it is known that there exist two continuous spe
given by [29]

w—lwy =0, (23)
M2(w — lwy)? — (€ + Mawy)? — (M, )? = 0. (24)

For a plasma column of constant density, separated by a vacuum region from the \
described by the density profile

5
0, rp<r <1,

(25)

wheren® = const., in addition to two infinitely degenerate points in the spectrum corr
sponding to the resonance conditions given by Eqgs. (23) and (24), there are two sul
waves which, fok =0, are given by [30]

€ 1 0,21 1/2
C()z_mde_1)@rj;m(1—2Mnrp) : (26)

3. NUMERICAL PROCEDURE

For an arbitrary profile of the number densi§the eigenvalue problem has to be solvec
numerically. One approach is to solve Eq. (16), with boundary condition (15) and f
condition of regularity at =0, using the finite difference method. This leads to a coe
ficient matrix which is nonlinear iw. In Ref. [17], a nonhomogeneous source term wa
introduced in Eq. (16). The mode frequencies were determined by vagyieglving the
nonhomogeneous equation, and finding values @fhich make the solution infinite (or
at least very large). In Ref. [17] the search involved 1200 different values éiterna-
tively, one can use an iterative method for computing the eigenvalues of the homogen
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problem. Such a method has been used in MHD [31]. It is recognized that this itera
method for solving a nonlinear eigenvalue problem requires more computation time ¢
pared to a procedure that involves solving a matrix eigenvalue problem which is linea
the eigenvalue.

We can obtain a matrix eigenvalue problem which is lineas by using finite difference
approximations in Egs. (11)—(14). We observe that Eq. (14) involves a derivatdsg .of
Does this require a boundary condition&in? At first glance it might appear théw, =0
would be an appropriate boundary condition at a rigid boundary-at. However, in the
previous section we observed that could be calculated without using any boundary
condition ondv,. Furthermore, for the constant density profile

Svr = [Mi(w —lox) AT J(Tr) + (¢ + 2May) (il /T)AJ(TT)]/G,

which does not vanish at=1. Furthermore, for the mode=1, it is readily seen that
Svr, vy #0atr =0. To avoid these difficulties we choose a finite difference scheme whi
does not involve the values 66, andév, atr =0 and 1. We define a set of equispace
grid pointsr; =i/N, i =0,1,..., N. For each intervalr[_y, r;] we define the midpoint
byri_12=(ri_1+r;)/2. For Egs. (11) and (12) we use finite difference approximations
the midpoints =r;_1,2,i =1, ..., N, while for Egs. (13) and (14) we use finite difference

approximations at the grid points=r;,i =1,..., N — 1. We obtain
fi — fia
Mlwy—1/2Ui—1/2 + (€ + 2Mwy i —1/2)vi—1/2 — —
=a)MUi_1/2, i =1...,N, (27)

Wrj — Wrj-1
Mlwr j—1/2vi—1/2 + (6 + 2Mwyji—1/2 + Mri—1/2M> Ui—1/2

h
I 1 .
_(fl—l+ fI)ZwMUI—1/27 I :17"'7N’ (28)
li—122
ler,iwi—l—kfi:a)Mwi, i=1...,N—-1, (29)
—li_1pfiii+ 2 —rig1f 12
|Cl)r,i |: 2 Lt h2| ! REEEEE + Ffl +k2ri f|:|
i
ri+1/2ni0+1/zui+l/2 - l’ifl/znio,l/zuifl/z ol 0
+ h +nyl E(vH_l/z + vi_1/2) + N kri w
—li_1pfica 4+ 2r fi —ripanf 12
—w |1/2|1+ ili i+1/2 |+1+_fi+k2rifi ’ i:l,...,N—l.
h2 I
(30)

Hereu=68v;,v=idvy, w =idv,, f =i8¢, and subscriptsi — % etc., denote values at grid
points and midpoints. The error in the finite difference approximations in Egs. (27)—(30
O(h?). Equations (27)—(30) can be written in the form

AX = wBX, (31)
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wherex is a vector of dimensionM — 2 defined by

.
X = [U12 v1/2 w1 f1 Uzpp v32 -+ wno1 fno1 Un—y2 ON—gy2] s

the superscript denotes the transpose, ahdndB are (AN — 2) x (4N — 2) real matrices.
Equation (31) is solved using readily available library subroutines.

Inanon-neutral plasma equilibrium, as in MHD equilibria, the region inside the enclosi
wall can contain vacuum regions as well as regions containing plasma. In numerical ¢
putations of the MHD spectrum [21, 22], a separate analysis is carried out for the vact
region. In a non-neutral plasma the appropriate equation in the vacuum region is

1d d 12
S —(r—8¢p) — =8¢ —k%¢p =0,
r dr < dr go) r2° ¢

andévy, dvg, anddv, have no meaning in the vacuum region. To satisfy these conditior

for points in the vacuum we artificially set all terms on the left-hand side of Egs. (27)—(:
to zero. Then for modes with # 0 the numerical solution satisfies

Mui_12 =0,
Mui_12 =0,
Mw; =0,

—ric12fica + 2 fi —rigap fi 12
i—1/2Ti 1+h2| [ i+1/2 I+l+rfi+k2rifi —0
i

for points in the vacuum, which is consistent with the governing equations in the vacu
region. The last equation is readily seen to be the finite difference representation of
equation forsg. The numerical scheme also yields a number of modesavitin, which
may not satisfy the correct governing equations in the vacuum region. We ignore tf
modes. This method of accounting for the vacuum region will encounter problems if
configuration has natural modes wii#h=0. In such a case we should write the finite
difference equation fody in the vacuum region. These equations do not invaivend,
therefore, can be solved fép in the vacuum region in terms éf in the plasma region.
Substituting this in the finite difference equations in the plasma region we obtain a ma
eigenvalue problem of reduced size. All eigensolutions, including any modesy\wt@,
are valid eigenmodes of the physical system. In our study, to account for the vacuum rec
we have used the method described first.

4. APPLICATIONS

In this section we use the numerical method developed in the previous section to com
the spectrum of electrostatic modes for a few test cases.
4.1. Constant Density Profile

As a first test case we consider a plasma column of constant density extending up t
wall

n=1 for0O<r <1 (32)
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Using Eq. (9) we easily see that the rotation frequency is given by

—e+4/1-2M
2M '

wy =

The two signs represent the slow and fast rotational equilibria. In our numerical study
will consider only the slow rotational equilibrium. This constant density plasma colur
is the counterpart of the homogeneous currentless plasma cylinder in MHD and the s
trum can contain infinitely degenerate eigenvalues. In MHD it was demonstrated tha
inappropriate choice of basis functions in the finite element method can destroy the de
eracy [32]. Two methods were suggested for preserving the degeneracy [19, 20]. For a
neutral plasma ik = 0 the spectrum contains the degenerate diocotron frequency

o =lwy, (33)
and the degenerate upper hybrid frequencies

[(e + M )? + (Ma)?] M
v .

(34)

w=lw +

Numerical computation was carried out for various valueMofFor N grid intervals the
diocotron frequency is obtained withi2(— 1)-fold degeneracy and each branch of the uppe
hybrid frequency withll — 1)-fold degeneracy. In addition, we obtain two eigenfrequencie
given by

oM
0=l i(EJrMi‘”’). (35)

For these two modes the eigenfunctions hé&we= ¢ = 0. It can be verified analytically,
using Egs. (11)—(14), that these represent valid eigensolutions and are not spurious m

For k0 for the special cast = 0.5 the spectrum again contains degenerate poin
which are given correctly by the numerical method. Egr0, M # 0.5 there are sequences
of eigenvalues representing the diocotron and the upper hybrid frequencigd. F6r4
ande =1, the spectrum for the modés- 1, and for a few values d between 0 and:2,
computed using 40 grid intervals, is shown in Fig. 1. The two bands in the middle repre:
the diocotron branch. These two bands start from the fundamental maedes-al.563652
andw = 0.182186 forkk = 27 and extend toward an accumulation poinbat —0.690983.
The two bands at the top and the bottom represent the upper hybrid branch. For compa
the eigenfrequencies computed using the analytical dispersion relation, Eq. (22), are
plotted in Fig. 1. The numerical and analytical results show very good agreement. Compe
the numbers we find that for each branch of the dispersion relation the frequency of
fundamental mode agrees to three decimal places while frequencies of the first 10 moc
each branch agree to 1%. The accuracy of the finite difference method can be signific:
further improved using Richardson extrapolation. In Fig. 2 we plot the eigenfunktion
computed using the finite difference method, for two different eigenfrequencies, wh
again show very good agreement with the analytical expression for the eigenfunction g
by Eq. (18).
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FIG.1. The spectrum of the mode=1, for a constant density profile witti = 0.4 ande = 1: (+) numerical
values; ) analytical values.

4.2. Continuously Varying Monotone Decreasing Density Profile
We next consider the density profile
n=1-r2 forO<r <1 (36)

Using Eq. (9) we obtain

—e+/1-2M(1~-r2/2)
2M '

Wy =

The spectrum is computed ff = 0.5,¢ = 1, andk = 0. For the modé= 1 the spectrum is
shownin Fig. 3. Itis seen to contain three bands of eigenfrequencies that agree well witt
analytical limits—1 < w < —0.292893 for the diocotron continuum given by Eq. (23), an
—2.414214< w < —2.024944 and 0.414214 o < 1.439157 for the upper hybrid continua
given by Eq. (24). This confirms the prediction of Ref. [29], that of the three singulariti
in Eg. (16) only two give rise to continuous spectra. From Fig. 3 we also observe that a
from the continuous spectra there are also two discrete modes, a diocotron mode ar
upper hybrid mode. For a mode in the upper hybrid continuum the electrostatic patentia
is shown in Fig. 4. It is seen thap vanishes outside the resonant layer. This confirms &
earlier conjecture that fdr=1 the upper hybrid branch contains a continuum of singule
eigenmodes but these have no electric field exterior to the plasma and therefore art
observable, or excitable, with electrodes exterior to the plasma [12]. We also compute
spectrum fol = 2 and obtain continua which agree with analytical predictions. Foramode
the diocotron continuundg anddse/dr are shown in Fig. 5, while for a mode in the upper
hybrid continuumgg is shown in Fig. 6. The singularities in the eigenfunctions agree wit
analytical predictions [29].
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FIG. 2. Eigenfunction of the modé=1, k=0 for a constant density profile for (a)=0.18218 and
(b) = —0.04459: () numerical values; (—) analytical values.

4.3. Surface Waves
We now consider the density profile
no(1 — ur?), 0<r <ry,
0, rp<r <1,

whereng andu are constants. We choosg= 1/(rg - %Mrg) so that the total number per
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FIG.3. The spectrum of the mode-= 1,k = 0 for a continuously varying monotone decreasing density profile
with M =0.5 ande = 1.
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FIG. 4. Eigenfunction fol =1 andw = 1.00208.
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FIG.5. (a) Eigenfunction and (b) derivative of the Eigenfunction for mbge? andw = —1.20081.

unit length is the same for all valuesfandr . In the plasma region8r <r the rotation
frequency is given by

—e++/1—2Mng(1 — ur2/2)
2M :

Wy =

Forrp, =05, e=1, andM =0.1 the frequencies of the surface modes vtk 0 and
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FIG. 6. Eigenfunction fol =2 andw = —2.61180.

I =1, 2, and 3, for values of in the range &< u < 1, are shown in Fig. 7. The values for
u =0 are in agreement with Eq. (26). We observe that for both branches of the disper
relation the frequency of the=1 mode does not vary with, or, in other words, the fre-

guency depends only on the total number per unit length regardless of the profile of nun
density. In the low-density approximation this result has been proved for the diocotron

4} J

-6F .

—10} i

_1 8 1 1 1 i 1 I 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
W

FIG. 7. Frequency of surface modes for a density profile with=0.1, ¢ = 1, andr, = 0.5.
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as well as for the cyclotron mode [12]. The result appears to hold for a plasma of arbit
density also. Fdr=2 and 3 we observe an increase in the mode frequencjetaseases,
i.e., for more peaked profiles.

4.4. Step Function Hollow Density Profile

As a fourth test case we consider the density profile

0, 0<r <rg,
n=<1  ro<r<ry, (38)
0, rp<r=<»>.1

In the plasma regiorny <r <r, the rotation frequency

—e+/1—-2M(1—-r2/r2
Y V (1-1/r%)

2M

We considerM =0.5, e =1, rg=0.25, andr, =0.5. The spectrum is computed for
I =1,k=0, and 2r. These modes are found to be stable. The spectruh=fdt, k=0
is shown in Fig. 8. As expected the diocotron branch has an unstable mode. We
observe a complex eigenfrequency in the upper hybrid branch. The results plotted ar
N = 320. To check whether this is a spurious unstable mode due to finite differencing
carried out calculations witN = 40, 80, and 160. Comparison of the imaginary part of th
eigenfrequency does not show convergence to a honzero value; rather, this part dect

0.08 T T T T
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0.04 b

0.02 J

1
|
i

-0.02 b

-0.041 .

-0.06 A

~0.08 ! 1 I I 1
-3 -2 -1 0 1 2 3

FIG. 8. The spectrum of the mode=2, k=0 for a hollow density profile wittM = 0.5, ¢ =1, r, = 0.25,
andr,=0.5.
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continuously with increasindyl. Although we have not been able to carry out computatior
with sufficiently highN, where this unstable mode disappears it appears likely that tt
complex eigenfrequency arises due to finite differencing and does notrepresent an insta
in the physical problem. We have also computed the spectruin=f@, k =2z and have
observed complex eigenfrequencies which again appear to be due to finite differenc
Therefore, for a hollow density profile, for the parameters chosen in our numerical stt
model =1 is stable, mode=2, k=0 has a diocotron instability, and mobe 2, k = 2

is again stable.

5. DISCUSSION

In this paper we have developed a numerical method for computing the spectrun
electrostatic modes in a cylindrical non-neutral plasma. We have used a finite differe
method with a staggered grid. This allows reduction to a generalized matrix eigenve
problem which is linear in the eigenfrequency and which can be solved using commc
available matrix eigenvalue solvers. This provides an efficient and robust method for c
puting the spectrum. The method has been checked using a number of test cases. Dege
eigenvalues, sequences of eigenfrequencies, continua, and instabilities are found to be
represented by the method. The numerical code developed can be a useful tool for ¢
puting mode frequencies for cylindrical non-neutral plasmas with arbitrary number den:
profiles which need not satisfy the low-density approximation. The results can be usefu
interpreting experimental results and for diagnostics.

The numerical code can be used to compute frequencies for cyclotron modes ol
modes at the Brillouin limit where experimental observations exist [10, 33]. Earlier t
observations were compared with analytical results valid for certain simple density profi
With the code developed in this paper, mode frequencies can be computed for arbil
profiles of the number density. Computation can be carried out for the profiles observe
the experiments.

The numerical method developed in this paper can be generalized to include more phy
e.g., plasma pressure or finite Larmor radius effects, or to multispecies ion plasmas |
The method can also be generalized to compute mode frequencies and instabilities in
dimensional configurations, e.g., spheroidal or toroidal equilibria.
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