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The eigenvalue problem governing small amplitude electrostatic modes in a cylin-
drical column of non-neutral plasma is solved using a finite difference method. The
eigenvalue problem is considered as a system of differential equations. A finite
difference approximation using a staggered grid converts this system to a gener-
alized matrix eigenvalue problem which is solved using readily available library
subroutines. Important features of the spectrum, such as degenerate eigenvalues, se-
quences of eigenvalues, continua, and unstable modes, are well represented by the
method. c© 2000 Academic Press
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1. INTRODUCTION

In recent years there has been considerable interest in computing the spectrum of elec-
trostatic modes in magnetically confined non-neutral plasmas. While the low-frequency
diocotron branch has been studied extensively, both analytically [1–5] and numerically
[6–8], interest in the high-frequency cyclotron or upper hybrid branch is fairly recent
[9–12]. To compare with the experimental observations [10], analytical solutions have been
obtained for cyclotron modes in a low-density cylindrical column of non-neutral plasma
[10–12]. These solutions are restricted to some particular choice of the equilibrium density
profile. Analytical solutions have also been obtained for both branches of the electrostatic
spectrum in a spheroidal non-neutral plasma [13]. These are again restricted by the as-
sumption of a constant density profile. The frequencies of various modes in spheroidal
non-neutral plasmas have been measured experimentally and these measurements have
been used as non-destructive diagnostics for plasma parameters [14–16]. It has been rec-
ognized that deviations from the number density profile assumed in the analytical studies
can cause quantitative changes in the mode frequencies [11]. Therefore, it appears relevant
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to develop a numerical code which can compute the entire spectrum of electrostatic modes
for arbitrary profiles of the number density.

Recently a numerical code for computing mode frequencies in a non-neutral plasma has
been developed [17]. This code allows arbitrary profiles of the number density and considers
both the diocotron and the upper hybrid branch. However, the method used involves an ex-
tensive search of the frequency domain, which is expected to be computationally expensive.
Computation of the mode frequencies was reported for configurations that are stable. Using
this code, it would be even more difficult to predict instability, since this would involve a
search in the complex frequency plane.

By contrast, in magnetohydrodynamics (MHD) codes have been developed which com-
pute the entire spectrum of normal modes [18–22]. These codes use the finite element
method to convert the differential equations governing linear stability to a generalized
matrix eigenvalue problem. The eigensolutions can then be readily obtained using matrix
eigenvalue solvers.

In this paper we develop a numerical code for computing the complete spectrum of
electrostatic modes in a non-neutral plasma. For simplicity we consider a cylindrical equi-
librium. We pattern our work on the lines of the stability codes in MHD. However, instead
of the finite element method, we use the finite difference method.

While developing the stability codes in MHD some difficulties were encountered, e.g.,
spectral pollution. It was demonstrated that the problem could be resolved by an appropriate
choice of basis functions in the finite element method [19]. Later it was shown that an
alternative method for avoiding spectral pollution was by using what were termed “finite
hybrid elements” [20]. This method uses the values of some variables at the mesh points
and of the other variables at midpoints between mesh points. Although spectral pollution
may not be a serious problem in the computation of the spectrum of a non-neutral plasma,
it was realized that the use of a finite difference approximation with a staggered grid, which
again uses the values of some variables at mesh points and of other variables at midpoints,
provides a method to correctly take into account the appropriate boundary conditions.

The novel feature of the present numerical study is the use of a staggered grid and a suitable
choice of which variables to define at grid points and which at midpoints. This allows us to
convert the differential equations governing linear stability to a matrix eigenvalue problem
which is linear in the eigenvalue and to develop codes for computing the entire spectrum of
eigenmodes on the lines of the widely used spectral codes in MHD [21, 22]. As discussed in
Section 3, the numerical method developed in this paper correctly addresses a tricky issue
regarding the appropriate boundary conditions for the problem.

It should be noticed that, while linear MHD stability is governed by a self-adjoint eigen-
value problem, the equations governing small amplitude electrostatic modes in a non-neutral
plasma constitute a non-self-adjoint system. While solutions have been obtained for the non-
self-adjoint eigenvalue problem governing resistive MHD stability [23], it is recognized
that the non-symmetric eigenvalue problem is still by no means standard [24]. Therefore, it
would be of interest to demonstrate the feasibility of solving the non-self-adjoint eigenvalue
problem for electrostatic modes in a non-neutral plasma.

This paper is arranged in the following manner. In Section 2 we formulate the problem of
linear stability to electrostatic modes in a cylindrical geometry. In Section 3 we develop the
numerical procedure for computing the spectrum and in Section 4 we use this procedure to
compute the spectrum for some specific choice of the number density profile. In Section 5
we discuss our findings and identify areas for further work.
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2. MATHEMATICAL FORMULATION

We consider a single species non-neutral plasma in an externally imposed magnetic field.
We assume that relativistic and plasma diamagnetic effects can be neglected and further-
more consider only electrostatic modes. Then, assuming a cold fluid model, the governing
equations are [25]

∂n

∂t
+∇ · (nv) = 0, (1)

∂v
∂t
+ v · ∇v = q

m
(−∇ϕ + v× B), (2)

∇2ϕ = − q

ε0
n. (3)

Heren andv are the number density and fluid velocity of the plasma,q andm are the
charge and mass of each particle of the plasma,ϕ is the electrostatic potential,B is the
externally imposed magnetic field, andε0 is the permittivity of free space. We now transform
to dimensionless variables. We scale coordinates, number density, and magnetic field with
respect to reference valuesa, n0, andB0. We choosea to be the radius of the cylindrical wall
enclosing the plasma;n0 to be the number density of the plasma on the axis, or, for an annular
plasma, to be the number density at some specified radial location; andB0 to be the axial
magnetic field. Furthermore, we scaleϕ, v, andt relative toϕ0=qn0a2/ε0, v0= |ϕ0|/aB0,
andt0=a/v0. In terms of dimensionless variables Eqs. (1)–(3) are

∂n

∂t
+∇ · (nv) = 0, (4)

M

(
∂v
∂t
+ v · ∇v

)
= −∇ϕ + εv× B, (5)

∇2ϕ = −n. (6)

Hereε= |q|/q is the sign of the charge on each particle of the plasma and

M = ω2
p0

ω2
c

, (7)

whereω2
p0=q2n0/ε0m andωc= |q|B0/m are the square of the plasma frequency and

the cyclotron frequency, respectively. It is readily seen thatt0=ωc/ω
2
p0. Therefore, the

frequency scale is twice the diocotron frequency.
We consider a cylindrical equilibrium confined by an axial magnetic field. In a cylindrical

coordinate system (r, θ, z) we assume that the magnetic field in dimensionless variables is
B= ez. We assume an equilibrium given by

n = n0(r ), v = rωr (r )eθ , ϕ = ϕ0(r ). (8)

The equation governing equilibrium is [26]

Mω2
r + εωr + 1

r 2

∫ r

0
n0(r ′)r ′ dr ′ = 0. (9)
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We next consider a perturbation from this equilibrium given by

n = n0+ δn, v = δvr er + (rωr + δvθ )eθ + δvzez, ϕ = ϕ0+ δϕ. (10)

The linearized equations for perturbations with (t, θ, z)-dependence of the form exp[i (lθ +
kz− ωt)] are [27]

−Mi (ω − lωr )δvr − (ε + 2Mωr )δvθ = − d

dr
δϕ, (11)

−Mi (ω − lωr )δvθ +
(
ε + 2Mωr + Mr

dωr

dr

)
δvr = − i l

r
δϕ, (12)

−Mi (ω − lωr )δvz = −ikδϕ, (13)

i (ω − lωr )

[
1

r

d

dr

(
r

d

dr
δϕ

)
− l 2

r 2
δϕ − k2δϕ

]
+ 1

r

d

dr

(
rn0δvr

)+ n0 i l

r
δvθ + n0ikδvz = 0. (14)

We assume a grounded conducting wall atr = 1. Thenϕ= 0 at r = 1. The appropriate
boundary condition on the perturbation is

δϕ = 0 atr = 1. (15)

Solving forδvr , δvθ , andδvz in terms ofδϕ from Eqs. (11)–(13) and substituting in Eq. (14),
we obtain

1

r

d

dr

[
r

(
1− Mn0

G

)
d

dr
δϕ

]
− l 2

r 2

(
1− Mn0

G

)
δϕ − k2

[
1− n0

M(ω − lωr )2

]
δϕ

+ 1

(ω − lωr )

l

r
δϕ

d

dr

[
n0

G
(ε + 2Mωr )

]
= 0, (16)

where

G = M2(ω − lωr )
2− (ε + 2Mωr )

(
ε + 2Mωr + Mr

dωr

dr

)
. (17)

Equation (16), together with boundary condition (15) and the condition of regularity of the
solution atr = 0, constitutes an eigenvalue problem forω. Once the eigenfunctionδϕ is
known,δvr , δvθ , andδvz can be obtained by algebraically solving Eqs. (11)–(13). Since no
derivatives of these variables are involved, the solutions forδvr , δvθ , andδvz can be obtained
without requiring any boundary conditions on these variables. The entire eigensolution can
be obtained using only boundary condition (15). Therefore Eq. (15) is the only boundary
condition required for Eqs. (11)–(14).

For a plasma column of constant density extending up to the wall,n0= 1 for 0≤ r ≤ 1,
the eigenvalue problem has an analytical solution [28]

δϕ = AJl (Tr), (18)
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whereA is a constant,Jl is the Bessel function of the first kind of orderl , and

T2 = −k2

[
1− 1

M(ω−lωr )2

](
1− M

G

) , (19)

where

G = M2(ω − lωr )
2− (ε + 2Mωr )

2. (20)

The dispersion relation is given by

T = plm, m= 1, 2, . . . , (21)

whereplm is themth zero ofJl (x)= 0. Using Eqs. (19) and (20), and with a little algebra,
we obtain

M3(ω − lωr )
4− M

{
(ε + 2Mωr )

2+ M
}
(ω − lωr )

2+ k2

k2+ p2
lm

(ε + 2Mωr )
2 = 0. (22)

For a non-constant density profile it is known that there exist two continuous spectra
given by [29]

ω − lωr = 0, (23)

M2(ω − lωr )
2− (ε + Mωr )

2− (Mωr )
2 = 0. (24)

For a plasma column of constant density, separated by a vacuum region from the wall,
described by the density profile

n0 =
{

n̄0, 0≤ r ≤ r p,

0, r p < r ≤ 1,
(25)

wheren̄0= const., in addition to two infinitely degenerate points in the spectrum corre-
sponding to the resonance conditions given by Eqs. (23) and (24), there are two surface
waves which, fork= 0, are given by [30]

ω = − ε

2M
+ (l − 1)ωr ± 1

2M

(
1− 2Mn̄0r 2l

p

)1/2
. (26)

3. NUMERICAL PROCEDURE

For an arbitrary profile of the number densityn0 the eigenvalue problem has to be solved
numerically. One approach is to solve Eq. (16), with boundary condition (15) and the
condition of regularity atr = 0, using the finite difference method. This leads to a coef-
ficient matrix which is nonlinear inω. In Ref. [17], a nonhomogeneous source term was
introduced in Eq. (16). The mode frequencies were determined by varyingω, solving the
nonhomogeneous equation, and finding values ofω which make the solution infinite (or
at least very large). In Ref. [17] the search involved 1200 different values ofω. Alterna-
tively, one can use an iterative method for computing the eigenvalues of the homogeneous
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problem. Such a method has been used in MHD [31]. It is recognized that this iterative
method for solving a nonlinear eigenvalue problem requires more computation time com-
pared to a procedure that involves solving a matrix eigenvalue problem which is linear in
the eigenvalueω.

We can obtain a matrix eigenvalue problem which is linear inω by using finite difference
approximations in Eqs. (11)–(14). We observe that Eq. (14) involves a derivative ofδvr .
Does this require a boundary condition onδvr ? At first glance it might appear thatδvr = 0
would be an appropriate boundary condition at a rigid boundary atr = 1. However, in the
previous section we observed thatδvr could be calculated without using any boundary
condition onδvr . Furthermore, for the constant density profile

δvr = [Mi (ω − lωr )AT J′l (Tr)+ (ε + 2Mωr )(i l /r )AJl (Tr)]/G,

which does not vanish atr = 1. Furthermore, for the model = 1, it is readily seen that
δvr , δvθ 6= 0 atr = 0. To avoid these difficulties we choose a finite difference scheme which
does not involve the values ofδvr andδvθ at r = 0 and 1. We define a set of equispaced
grid pointsri = i /N, i = 0, 1, . . . , N. For each interval [ri−1, ri ] we define the midpoint
by r i−1/2= (ri−1+ ri )/2. For Eqs. (11) and (12) we use finite difference approximations at
the midpointsr = ri−1/2, i = 1, . . . , N, while for Eqs. (13) and (14) we use finite difference
approximations at the grid pointsr = ri , i = 1, . . . , N − 1. We obtain

Mlωr,i−1/2ui−1/2+ (ε + 2Mωr,i−1/2)vi−1/2− fi − fi−1

h
= ωMui−1/2, i = 1, . . . , N, (27)

Mlωr,i−1/2vi−1/2+
(
ε + 2Mωr,i−1/2+ Mri−1/2

ωr,i − ωr,i−1

h

)
ui−1/2

+ l

r i−1/2

1

2
( fi−1+ fi ) = ωMvi−1/2, i = 1, . . . , N, (28)

Mlωr,iwi + k fi = ωMwi , i = 1, . . . , N − 1, (29)

lωr,i

[−ri−1/2 fi−1+ 2ri fi − ri+1/2 fi+1

h2
+ l 2

ri
fi + k2ri fi

]
+ ri+1/2n0

i+1/2ui+1/2− ri−1/2n0
i−1/2ui−1/2

h
+ n0

i l
1

2
(vi+1/2+ vi−1/2)+ n0

i kriwi

=ω
[−ri−1/2 fi−1+ 2ri fi − ri+1/2 fi+1

h2
+ l 2

ri
fi + k2ri fi

]
, i = 1, . . . , N − 1.

(30)

Hereu= δvr ,v= i δvθ ,w= i δvz, f = i δϕ, and subscriptsi , i − 1
2, etc., denote values at grid

points and midpoints. The error in the finite difference approximations in Eqs. (27)–(30) is
O(h2). Equations (27)–(30) can be written in the form

Ax = ωBx, (31)
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wherex is a vector of dimension 4N− 2 defined by

x = [u1/2 v1/2 w1 f1 u3/2 v3/2 · · · wN−1 fN−1 uN−1/2 vN−1/2]T ;
the superscriptT denotes the transpose, andA andB are (4N− 2)× (4N− 2) real matrices.
Equation (31) is solved using readily available library subroutines.

In a non-neutral plasma equilibrium, as in MHD equilibria, the region inside the enclosing
wall can contain vacuum regions as well as regions containing plasma. In numerical com-
putations of the MHD spectrum [21, 22], a separate analysis is carried out for the vacuum
region. In a non-neutral plasma the appropriate equation in the vacuum region is

1

r

d

dr

(
r

d

dr
δϕ

)
− l 2

r 2
δϕ − k2δϕ = 0,

andδvr , δvθ , andδvz have no meaning in the vacuum region. To satisfy these conditions,
for points in the vacuum we artificially set all terms on the left-hand side of Eqs. (27)–(30)
to zero. Then for modes withω 6= 0 the numerical solution satisfies

Mui−1/2 = 0,

Mvi−1/2 = 0,

Mwi = 0,[−ri−1/2 fi−1+ 2ri fi − ri+1/2 fi+1

h2
+ l 2

ri
fi + k2ri fi

]
= 0,

for points in the vacuum, which is consistent with the governing equations in the vacuum
region. The last equation is readily seen to be the finite difference representation of the
equation forδϕ. The numerical scheme also yields a number of modes withω= 0, which
may not satisfy the correct governing equations in the vacuum region. We ignore these
modes. This method of accounting for the vacuum region will encounter problems if the
configuration has natural modes withω= 0. In such a case we should write the finite
difference equation forδϕ in the vacuum region. These equations do not involveω and,
therefore, can be solved forδϕ in the vacuum region in terms ofδϕ in the plasma region.
Substituting this in the finite difference equations in the plasma region we obtain a matrix
eigenvalue problem of reduced size. All eigensolutions, including any modes withω= 0,
are valid eigenmodes of the physical system. In our study, to account for the vacuum region,
we have used the method described first.

4. APPLICATIONS

In this section we use the numerical method developed in the previous section to compute
the spectrum of electrostatic modes for a few test cases.

4.1. Constant Density Profile

As a first test case we consider a plasma column of constant density extending up to the
wall

n0 = 1 for 0≤ r ≤ 1. (32)



ELECTROSTATIC SPECTRUM OF A NON-NEUTRAL PLASMA 319

Using Eq. (9) we easily see that the rotation frequency is given by

ωr = −ε ±
√

1− 2M

2M
.

The two signs represent the slow and fast rotational equilibria. In our numerical study we
will consider only the slow rotational equilibrium. This constant density plasma column
is the counterpart of the homogeneous currentless plasma cylinder in MHD and the spec-
trum can contain infinitely degenerate eigenvalues. In MHD it was demonstrated that an
inappropriate choice of basis functions in the finite element method can destroy the degen-
eracy [32]. Two methods were suggested for preserving the degeneracy [19, 20]. For a non-
neutral plasma ifk= 0 the spectrum contains the degenerate diocotron frequency

ω = lωr , (33)

and the degenerate upper hybrid frequencies

ω = lωr ±
[
(ε + Mωr )

2+ (Mωr )
2
]1/2

M
. (34)

Numerical computation was carried out for various values ofM . For N grid intervals the
diocotron frequency is obtained with 2(N− 1)-fold degeneracy and each branch of the upper
hybrid frequency with (N− 1)-fold degeneracy. In addition, we obtain two eigenfrequencies
given by

ω = lωr ± (ε + 2Mωr )

M
. (35)

For these two modes the eigenfunctions haveδvz= δϕ= 0. It can be verified analytically,
using Eqs. (11)–(14), that these represent valid eigensolutions and are not spurious modes.

For k 6= 0 for the special caseM = 0.5 the spectrum again contains degenerate points
which are given correctly by the numerical method. Fork 6= 0, M 6= 0.5 there are sequences
of eigenvalues representing the diocotron and the upper hybrid frequencies. ForM = 0.4
andε= 1, the spectrum for the modesl = 1, and for a few values ofk between 0 and 2π ,
computed using 40 grid intervals, is shown in Fig. 1. The two bands in the middle represent
the diocotron branch. These two bands start from the fundamental modes atω=−1.563652
andω= 0.182186 fork = 2π and extend toward an accumulation point atω=−0.690983.
The two bands at the top and the bottom represent the upper hybrid branch. For comparison
the eigenfrequencies computed using the analytical dispersion relation, Eq. (22), are also
plotted in Fig. 1. The numerical and analytical results show very good agreement. Comparing
the numbers we find that for each branch of the dispersion relation the frequency of the
fundamental mode agrees to three decimal places while frequencies of the first 10 modes in
each branch agree to 1%. The accuracy of the finite difference method can be significantly
further improved using Richardson extrapolation. In Fig. 2 we plot the eigenfunctionδϕ,
computed using the finite difference method, for two different eigenfrequencies, which
again show very good agreement with the analytical expression for the eigenfunction given
by Eq. (18).
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FIG. 1. The spectrum of the model = 1, for a constant density profile withM = 0.4 andε= 1: (+) numerical
values; (×) analytical values.

4.2. Continuously Varying Monotone Decreasing Density Profile

We next consider the density profile

n0 = 1− r 2 for 0≤ r ≤ 1. (36)

Using Eq. (9) we obtain

ωr = −ε ±
√

1− 2M(1− r 2/2)

2M
.

The spectrum is computed forM = 0.5,ε= 1, andk= 0. For the model = 1 the spectrum is
shown in Fig. 3. It is seen to contain three bands of eigenfrequencies that agree well with the
analytical limits−1≤ω≤−0.292893 for the diocotron continuum given by Eq. (23), and
−2.414214≤ω≤−2.024944 and 0.414214≤ ω ≤ 1.439157 for the upper hybrid continua
given by Eq. (24). This confirms the prediction of Ref. [29], that of the three singularities
in Eq. (16) only two give rise to continuous spectra. From Fig. 3 we also observe that apart
from the continuous spectra there are also two discrete modes, a diocotron mode and an
upper hybrid mode. For a mode in the upper hybrid continuum the electrostatic potentialδϕ

is shown in Fig. 4. It is seen thatδϕ vanishes outside the resonant layer. This confirms an
earlier conjecture that forl = 1 the upper hybrid branch contains a continuum of singular
eigenmodes but these have no electric field exterior to the plasma and therefore are not
observable, or excitable, with electrodes exterior to the plasma [12]. We also compute the
spectrum forl = 2 and obtain continua which agree with analytical predictions. For a mode in
the diocotron continuum,δϕ anddδϕ/dr are shown in Fig. 5, while for a mode in the upper
hybrid continuum,δϕ is shown in Fig. 6. The singularities in the eigenfunctions agree with
analytical predictions [29].
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FIG. 2. Eigenfunction of the model = 1, k= 0 for a constant density profile for (a)ω= 0.18218 and
(b)ω=−0.04459: (+) numerical values; (—) analytical values.

4.3. Surface Waves

We now consider the density profile

n0 =
{

n0(1− µr 2), 0≤ r ≤ r p,

0, r p < r ≤ 1,
(37)

wheren0 andµ are constants. We choosen0= 1/(r 2
p − 1

2µr 4
p) so that the total number per



322 GOSWAMI, BHATTACHARYYA, AND SEN

FIG. 3. The spectrum of the model = 1,k= 0 for a continuously varying monotone decreasing density profile
with M = 0.5 andε= 1.

FIG. 4. Eigenfunction forl = 1 andω= 1.00208.
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FIG. 5. (a) Eigenfunction and (b) derivative of the Eigenfunction for model = 2 andω=−1.20081.

unit length is the same for all values ofµ andr p. In the plasma region 0≤ r ≤ r p the rotation
frequency is given by

ωr = −ε ±
√

1− 2Mn0(1− µr 2/2)

2M
.

For r p= 0.5, ε= 1, and M = 0.1 the frequencies of the surface modes withk= 0 and
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FIG. 6. Eigenfunction forl = 2 andω=−2.61180.

l = 1, 2, and 3, for values ofµ in the range 0≤µ≤ 1, are shown in Fig. 7. The values for
µ= 0 are in agreement with Eq. (26). We observe that for both branches of the dispersion
relation the frequency of thel = 1 mode does not vary withµ, or, in other words, the fre-
quency depends only on the total number per unit length regardless of the profile of number
density. In the low-density approximation this result has been proved for the diocotron [2]

FIG. 7. Frequency of surface modes for a density profile withM = 0.1, ε= 1, andr p= 0.5.
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as well as for the cyclotron mode [12]. The result appears to hold for a plasma of arbitrary
density also. Forl = 2 and 3 we observe an increase in the mode frequencies asµ increases,
i.e., for more peaked profiles.

4.4. Step Function Hollow Density Profile

As a fourth test case we consider the density profile

n0 =


0, 0≤ r < r0,

1, r0 ≤ r ≤ r p,

0, r p < r ≤ 1.

(38)

In the plasma regionr0≤ r ≤ r p the rotation frequency

ωr =
−ε ±

√
1− 2M

(
1− r 2

0

/
r 2
)

2M
.

We considerM = 0.5, ε= 1, r0= 0.25, andr p= 0.5. The spectrum is computed for
l = 1, k= 0, and 2π . These modes are found to be stable. The spectrum forl = 2, k= 0
is shown in Fig. 8. As expected the diocotron branch has an unstable mode. We also
observe a complex eigenfrequency in the upper hybrid branch. The results plotted are for
N= 320. To check whether this is a spurious unstable mode due to finite differencing we
carried out calculations withN= 40, 80, and 160. Comparison of the imaginary part of the
eigenfrequency does not show convergence to a nonzero value; rather, this part decreases

FIG. 8. The spectrum of the model = 2, k= 0 for a hollow density profile withM = 0.5, ε= 1, r0= 0.25,
andr p= 0.5.
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continuously with increasingN. Although we have not been able to carry out computations
with sufficiently highN, where this unstable mode disappears it appears likely that this
complex eigenfrequency arises due to finite differencing and does not represent an instability
in the physical problem. We have also computed the spectrum forl = 2, k= 2π and have
observed complex eigenfrequencies which again appear to be due to finite differencing.
Therefore, for a hollow density profile, for the parameters chosen in our numerical study,
model = 1 is stable, model = 2, k= 0 has a diocotron instability, and model = 2, k= 2π
is again stable.

5. DISCUSSION

In this paper we have developed a numerical method for computing the spectrum of
electrostatic modes in a cylindrical non-neutral plasma. We have used a finite difference
method with a staggered grid. This allows reduction to a generalized matrix eigenvalue
problem which is linear in the eigenfrequency and which can be solved using commonly
available matrix eigenvalue solvers. This provides an efficient and robust method for com-
puting the spectrum. The method has been checked using a number of test cases. Degenerate
eigenvalues, sequences of eigenfrequencies, continua, and instabilities are found to be well
represented by the method. The numerical code developed can be a useful tool for com-
puting mode frequencies for cylindrical non-neutral plasmas with arbitrary number density
profiles which need not satisfy the low-density approximation. The results can be useful for
interpreting experimental results and for diagnostics.

The numerical code can be used to compute frequencies for cyclotron modes or for
modes at the Brillouin limit where experimental observations exist [10, 33]. Earlier the
observations were compared with analytical results valid for certain simple density profiles.
With the code developed in this paper, mode frequencies can be computed for arbitrary
profiles of the number density. Computation can be carried out for the profiles observed in
the experiments.

The numerical method developed in this paper can be generalized to include more physics,
e.g., plasma pressure or finite Larmor radius effects, or to multispecies ion plasmas [34].
The method can also be generalized to compute mode frequencies and instabilities in two-
dimensional configurations, e.g., spheroidal or toroidal equilibria.
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